
310 IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 8, NO. 9, SEPTEMBER 1998

A Time-Domain Vector Potential Formulation for
the Solution of Electromagnetic Problems
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Abstract—We present an alternative vector potential formu-
lation of Maxwell’s equations derived upon introduction of a
quantity related to the Hertz potential. Once space and time
are discretized, within this formulation the electric field and
vector potential components are condensed in the same point in
the elementary cell. In three dimensions the formulation offers
an alternative to finite-difference time-domain (FDTD) method;
when reduced to a two-dimensional (2-D) problem, only two
variables, instead of three, are necessary, implying a net memory
saving of 1/3 with respect to FDTD.

I. INTRODUCTION

SEVERAL numerical techniques have been devised in the
past to solve electromagnetic problems in the time domain.

Much work has also been devoted to the formulation of a
condensed node representation of the field components in the
elementary computational cell. Condensed node transmission-
line matrix (TLM) [1], for example, achieved this goal at
the price of a higher number of variables per elementary cell
and consequently a larger memory requirement. The classical
vector potential formulation, upon introduction of the scalar
potential [2], ensures the condensed node representation of
the field components, and it offers also the advantage that
each field component can be propagated in time and space
independently from the others. The disadvantage with this
approach is mainly the difficulty in imposing proper boundary
conditions, since there is no access to the field components.

In the vector potential approach presented here, the intro-
duction of a new vector quantity and its relation with
the electric field guarantees the advantages of the classical
vector potential formulation, such as the condensed node
representation of the fields components. In addition, this
formulation gives direct access to the electric field so that
boundary conditions can be easily implemented, and the
equations are all first order in time. A net reduction of
30% in memory requirement is achieved when solving a
two-dimensional (2-D) problem. Compared to other work on
modified finite-difference time-domain (FDTD) formulations
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obtaining reduction in memory requirements [3], our approach
is not limited to specific structures.

II. V ECTOR POTENTIAL FORMULATION

Consider a charge-free medium, where both the permeability
and permittivity are frequency independent but they can vary
in space. It is possible to rewrite Maxwell’s equations upon
introduction of the vector potential in the following form
[4]:

(1a)

(1b)

(1c)

where (1c) is the generalized Lorentz–Gauge condition for in-
homogeneous media; it reduces to the standard Lorentz–Gauge
condition when the dielectric constant is space invariant. We
take a different approach in solving (1) by introducing a new
vector quantity such that

(2)

This allows us to rewrite system (1) exploiting a new set of
variables which is more convenient from the computational
point of view. One important property of the vector can
be derived by comparing the curl of (1b) and the curl of (2):

(3)

Hence it is possible to rewrite system (1) without the use of the
scalar potential, which is somehow included within We
can exploit this property since in the calculation of the electric
field only the curl of is needed and not itself [5]–[7]:

(4a)

(4b)

In a totally analogous way we can rewrite Maxwell’s equations
upon introduction of the magnetic vector potential The
equations are further simplified by using defined as

so that we obtain

(5a)

(5b)
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(a) (b)

Fig. 1. (a) Along the sides of the elementary cell lie the components of the
vector (r �KKK); from which Ex can be calculated. (b) The curl ofKKK is
calculated from its components.

Systems (4) and (5) are totally equivalent, and one may use
either one depending on which one is more convenient, given
the symmetry and the nature of the electromagnetic problem.
Notice that the new vector quantities introduced
can be easily related to the Hertz potentials In fact,
combining the equation defining the magnetic Hertz potential
[8]

(6)

together with (2), one obtains

(7)

which, upon simple integration, leads to

(8)

Similarly, it is possible to derive the corresponding equation
for the electric Hertz potential.

Let us now focus on system (4) and show how all the field
components can be thought to belong to the same point in
the elementary computational cell, which is the basis for the
condensed node field representation. Equation (4b) ensures that
the vectors and are parallel. Furthermore, the spatial
derivatives described in (4a) are to be discretized in space
using the central difference scheme, which ensures the same
location for the components of and in the unit cell. As
an example we show that and belong to the same
location in the elementary cell. The same is true for all the
other pairs of components.

Consider the elementary cell as shown in Fig. 1(a). Begin
with the assumption that the x-component of the electric field
is located in the center of the cell. According to (4a) the time
derivative of its value can be evaluated as the curl of the
vector whose components lie along the sides of
the elementary cell, as visible in Fig. 1(a). Focus now on the
components visible in Fig. 1(b) and corresponding
to the top of the cell in Fig. 1(a). Fig. 1(b) shows how to
calculate the curl of from its components. By comparing
Fig. 1(a) and (b), it is clear that and belong to the
same point in space. Clearly this is not a formal point, because
not only are and located in the center of the cell,
but also the other components of and as well. The
condensed node representation of the electric field shows, as an

example, in the implementation of metal boundary conditions.
In fact the interface is located exactly in the center of the
computational cell, and the metal treatment can be obtained
by simply setting to zero the field component at that location.
On the contrary in the standard FDTD, separate treatment for
each field component must be implemented at the same cell.

As in FDTD, the stability condition for this numerical
technique, is set by the Courant condition [2], which requires
that in one time step the propagating wave must not travel
through more than one computatinal cell.

III. FORMULATION FOR THE TM AND TE CASES

Let us consider the TM electromagnetic problem where
only and field components are present. Due to
the peculiar symmetry, this case can be addressed as a 2-D
problem. Within this vector potential formulation, it is not
necessary to use and and we only need be concerned
with The presence of implies the existence of from
(2). As a consequence, (4) is projected along the-direction
giving

(9)

where is This is not a formal point,
since it causes a reduction in memory storage requirement
of 1/3 with respect to the FDTD formulation where all three
components and must be treated. However, the
computational speed is the same as in the FDTD algorithm,
because at each time step the number of computer operations
is the same.

We present here numerical experimental results for the in-
ternal electric field of a multilayer circular dielectric cylinder,
assumed to be infinite in the-direction. The incident radiation
is a TM wave with respect to the cylinder symmetry axis.
Again the symmetry is such that the problem can be solved
in two dimensions. The three layers of the cylinder are shown
in Fig. 2. The inner core has radius of 0.1 m and relative
dielectric constant of the next two shells have radii
of 0.15 and 0.2 m, respectively, and dielectric constants
and The computational domain consists of 400400
square cells with lateral size 0.5 mm, while the time resolution
is 0.5 ps. The source of the radiation investing the cylinder
is a plane wave for the-component of the electric field at
1.5 GHz. The electric field inside the cylinder, along
its diameter perpendicular to the incident wave, is shown in
Fig. 2 and compared to the exact solution [9].

Now let us consider the complementary TE case where
only and field components are present. It is
convenient, here, to exploit the formulation expressed
by system (5), which can be further simplified since only the
-component of the magnetic field is present

(10)
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Fig. 2. Values of the magnitude ofEz inside the dielectric multilayer cylinder along the diameter, obtained with the three methods.

Notice that in this case too, only two scalar quantities
are needed to solve the TE problem, with the same advantages
explained before.

IV. CONCLUSIONS

We have derived an alternative formulation of the Maxwell’s
equations with the use of the vector potential, and the equations
can be further simplified with the introduction of the vector

The two alternative derivations, employing either the
pairs or are completely equivalent, and
one is allowed to choose the most convenient formulation
according to the symmetry of the problem. In three dimensions
the formulation offers an alternative to the usual FDTD
method, since the same number of variables is needed to solve
the electromagnetic problem. However, with the present for-
mulation the electric and vector potential fields are condensed
in the same point in space, within the computational cell. When
reduced to a 2-D problem, TM or TE case, only two variables,
instead of three, are to be used, implying a net memory saving
of 1/3 over the usual FDTD formulation.
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