310 IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 8, NO. 9, SEPTEMBER 1998

A Time-Domain Vector Potential Formulation for
the Solution of Electromagnetic Problems
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Abstract—We present an alternative vector potential formu- obtaining reduction in memory requirements [3], our approach
lation of Maxwell's equations derived upon introduction of a s not limited to specific structures.
quantity related to the Hertz potential. Once space and time
are discretized, within this formulation the electric field and
vector potential components are condensed in the same point in II. VECTOR POTENTIAL FORMULATION

the elementary cell. In three dimensions the formulation offers Consider a charge-free medium, where both the permeability
an alternative to finite-difference time-domain (FDTD) method,; and permittivity are frequency independent but they can vary

when reduced to a two-dimensional (2-D) problem, only two . It ible t ite M n i
variables, instead of three, are necessary, implying a net memory In space. It 1S possibie o rewrite Maxwell's equations upon

saving of 1/3 with respect to FDTD. introduction of the vector potentiad in the following form
[4]:
|. INTRODUCTION %_f = lv X <lv X A) (1a)
. . . . £
VERAL numerical techniques have been devised in the A b
ast to solve electromagnetic problems in the time domain. i —-E—-V¢ (1b)

Much work has also been devoted to the formulation of a
: . ) 0¢
condensed node representation of the field components in the Ep——
elementary computational cell. Condensed node transmission- ] o ] - ]
line matrix (TLM) [1], for example, achieved this goal atwhere (1c) is the ggne'rallzed Lorentz—Gauge condition for in-
the price of a higher number of variables per elementary cBfmogeneous media; it reduces to the standard Lorentz-Gauge
and consequently a larger memory requirement. The classig@ndition when the dielectric constant is space invariant. We
vector potential formulation, upon introduction of the scaldfke a different approach in solving (1) by introducing a new
potential [2], ensures the condensed node representation’@$tor quantityK., such that
the field components, and it offers also the advantage that 0K. _E 2)
each field component can be propagated in time and space ot '
independently from the others. The disadvantage with thigis allows us to rewrite system (1) exploiting a new set of
approach is mainly the difficulty in imposing proper boundaryariables which is more convenient from the computational
conditions, since there is no access to the field componentgoint of view. One important property of the vecthf. can

In the vector potential approach presented here, the intig= derived by comparing the curl of (1b) and the curl of (2):
duction of a new vector quantityK) and its relation with Vx AV x K 3)

the electric field guarantees the advantages of the classical
vector potential formulation, such as the condensed noHence it is possible to rewrite system (1) without the use of the
representation of the fields components. In addition, thégalar potential, which is somehow included wittify. We
formulation gives direct access to the electric field so thahn exploit this property since in the calculation of the electric
boundary conditions can be easily implemented, and tkield only the curl ofA is needed and nof itself [5]-[7]:

= - iv (eA) (1c)

equations are all first order in time. A net reduction of 9E 1 1
30% in memory requirement is achieved when solving a 5 =V X <—V XK@) (4a)
. - T € 7
two-dimensional (2-D) problem. Compared to other work on 9K
modified finite-difference time-domain (FDTD) formulations ate =_E. (4b)
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z z example, in the implementation of metal boundary conditions.
In fact the interface is located exactly in the center of the
computational cell, and the metal treatment can be obtained
by simply setting to zero the field component at that location.
On the contrary in the standard FDTD, separate treatment for
each field component must be implemented at the same cell.
As in FDTD, the stability condition for this numerical
technique, is set by the Courant condition [2], which requires

(VXKy

Ll y y

(VxK)y that in one time step the propag_ating wave must not travel
/7 through more than one computatinal cell.
X X [ll. FORMULATION FOR THE TM AND TE CASES

@ (b) Let us consider the TM electromagnetic problem where
Fig. 1. (a) Along the sides of the elementary cell lie the components of tl . ;
vector (V x K), from which £, can be calculated. (b) The curl d is ?f]hly E"fI’”’ and Hyt fleltdh.componentsbare C?(;esema Due t02 D
calculated from its components. € peculiar symmetry, this case can be addressed as a -
) problem. Within this vector potential formulation, it is not
Systems (4) and (5) are totally equivalent, and one may Usgcessary to us#,. and H,, and we only need be concerned
either one depending on which one is more convenient, givV@fth £.. The presence a. implies the existence k.. from

the symmetry and the nature of the electromagnetic problefy As a consequence, (4) is projected along thgirection
Notice that the new vector quantities introducel., K1) giving

can be easily related to the Hertz potentidlg, I1). In fact,

E:E(;)]mbining the equation defining the magnetic Hertz potential a(;% :1 oy <lvw > (Ke)z>
d IKe). _
E == (V x 1) (6) —a = E- ©)
together with (2), one obtains whereV, , is (8/0x)2 +(8/0y)7. This is not a formal point,
oK, 9 since it causes a reduction in memory storage requirement
ot _“a(v x 1I1.) (") of 1/3 with respect to the FDTD formulation where all three
which, upon simple integration, leads to components gz, H,, and H,) must be treated. However, the

computational speed is the same as in the FDTD algorithm,

Ke =—pV x 1. 8) because at each time step the number of computer operations
Similarly, it is possible to derive the corresponding equatidg the same.
for the electric Hertz potential. We present here numerical experimental results for the in-

Let us now focus on system (4) and show how all the fiel@rnal electric field of a multilayer circular dielectric cylinder,
components can be thought to belong to the same pointassumed to be infinite in thedirection. The incident radiation
the elementary computational cell, which is the basis for the a TM wave with respect to the cylinder symmetry axis.
condensed node field representation. Equation (4b) ensures f@in the symmetry is such that the problem can be solved
the vectorsk and K. are parallel. Furthermore, the spatialn two dimensions. The three layers of the cylinder are shown
derivatives described in (4a) are to be discretized in spageFig. 2. The inner core has radius of 0.1 m and relative
using the central difference scheme, which ensures the safiglectric constant of = 4.0; the next two shells have radii
location for the components df and K. in the unit cell. As of 0.15 and 0.2 m, respectively, and dielectric constants3
an example we show thaf, and K. belong to the same ande = 2. The computational domain consists of 480400
location in the elementary cell. The same is true for all thequare cells with lateral size 0.5 mm, while the time resolution
other pairs of components. is 0.5 ps. The source of the radiation investing the cylinder

Consider the elementary cell as shown in Fig. 1(a). Begi& a plane wave for the-component of the electric field at
with the assumption that the x-component of the electric field5 GHz. The electric field £.) inside the cylinder, along
is located in the center of the cell. According to (4a) the timigs diameter perpendicular to the incident wave, is shown in
derivative of its value can be evaluated as the curl of th®g. 2 and compared to the exact solution [9].
vector (V x K.), whose components lie along the sides of Now let us consider the complementary TE case where
the elementary cell, as visible in Fig. 1(a). Focus now on theily H., FE,, and E, field components are present. It is
componentgV x K. ), visible in Fig. 1(b) and correspondingconvenient, here, to exploit thE, k), formulation expressed
to the top of the cell in Fig. 1(a). Fig. 1(b) shows how tgy system (5), which can be further simplified since only the
calculate the curl oK. from its components. By comparing .-component of the magnetic field is present
Fig. 1(a) and (b), it is clear thak, and K., belong to the

same point in space. Clearly this is not a formal point, because % - lvx v X <1Vx v X (Kh)z>
not only areF, and K., located in the center of the cell, ot H €
but also the other components & and E as well. The O(K1)-

, 7 =H.. 10
condensed node representation of the electric field shows, as an ot (10)
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Fig. 2. Values of the magnitude d - inside the dielectric multilayer cylinder along the diameter, obtained with the three methods.
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